# Building and application of pesticide environmental model in China

ZHOU Yanming/ 周艳明

**Environment Division**,

Institute for the Control of Agrochemicals, Ministry of Agriculture, P.R. China





- Overview
- Scenarios
- Models
- Application



## ERA R&D in China



| Projects/Funding Agencies                           | Time      |
|-----------------------------------------------------|-----------|
| Asia Facility for China/5 Dutch ministries          | 2008-2010 |
| Dutch MOA & Embassy in China                        | 2006-2009 |
| Introduction of Foreign Advanced Technology /SAFEA  | 2007-2010 |
| Pesticide Safety Monitoring and Evaluation / MOA    | 2009-2012 |
| Sino-Us Cooperation/Chinese MOA & USEPA, USDA       | 2007-2011 |
| Scientific Research for public welfare/MOA & MOST   | 2009-2013 |
| 11th, 12th science & technology Pillar Program/MOST | 2005-2015 |
| Agriculture standardization project/MOA             | 2014-2016 |
| Pesticide usage reduce project/MOST                 | 2016-2020 |



# Sino-Dutch Pesticide Environmental Risk Assessment Project







#### Current guidance documents on ERA



- Aquatic Ecosystems
- Birds
- Honeybee
- Silkworm
- Ground water
- Non-target arthropod
- Soil organisms (Draft)

NY/T 2882.1-2016~NY/T 2882.7-2016 (issued by MOA in May 23<sup>rd</sup>, 2016

## What is a model and why modelling?



- Model: simplified representation of reality
- Alternative are measurements
  - expensive and slow
  - large variation in soils, weather
- Advantage of modelling
  - cheap and fast
  - knowledge from one pesticide applicable to others
  - effects of other conditions
  - based on laboratory studies (available in dossiers)
- Scenario
  - A set of fixed input parameters in a pesticide fate model



#### Distribution map of Multi-year average rainfall





Distribution map of Multi-year average temperature







#### Overlay the two maps





#### Digital Elevation Model, DEM



#### Agricultural land



#### Ground water scenario zone:



#### Surface water scenario zone



Distribution map of Multi-vear 80th maximum daily rainfall



30 years meteorological data from 580 meteo station ArcGIS® Desktop 9.2.



#### Surface water scenario zone



Overlay of Multi-year 80th maximum daily rainfall Distribution map and groundwater

scenario zone



Surface water and groundwater can use the same scenario zone



#### Scenario zone





### Groundwater scenario











# Dry land groundwater scenario







# Paddy field groundwater and surface water scenario







#### China-PEARL model







#### TOP-RICE model







#### **TOP-RICE** model





PEC<sub>GW</sub>, pesticide and metabolite

# TOP-RICE: in comparison with PFAM



|                            | Unit         | A   | В         | С       | D    | Е     | F    | G   | Н   | I    |
|----------------------------|--------------|-----|-----------|---------|------|-------|------|-----|-----|------|
| Molecular mass             | g/mol        | 300 | 0 for     | all con | npou | nds   |      |     |     |      |
| Vapour pressure            | Pa at 20°C   | 1 x | $10^{-7}$ | for all | com  | pound | S    |     |     |      |
| Solubility                 | mg/L at 20°C | 1 f | or all    | comp    | ound | S     |      |     |     |      |
| Koc                        | L/kg         | 10  | 10        | 1000    | 10   | 100   | 1000 | 10  | 100 | 1000 |
|                            |              |     | 0         |         |      |       |      |     |     |      |
| Freundlich 1/n             | (-)          | 0.9 | for a     | all com | pour | nds   |      |     |     |      |
| Soil aerobic degradation   | days         | 3   | 3         | 3       | 30   | 30    | 30   | 300 | 300 | 300  |
| Soil anaerobic degradation | days         | 3   | 3         | 3       | 30   | 30    | 30   | 300 | 300 | 300  |
| Water layer of water body  | days         | 1   | 1         | 1       | 10   | 10    | 10   | 100 | 100 | 100  |
| Water layer of paddy field | days         | 1   | 1         | 1       | 10   | 10    | 10   | 100 | 100 | 100  |
| Half life at crop surface  | days (20 °C) | 10  | for a     | ll com  | poun | ds    |      |     |     |      |
| Wash off factor            | 1/m          | 10  | 0 for     | all con | npou | nds   |      |     |     |      |

# TOP-RICE2: in comparison with PFAM



| Chemical     | Scenario | PEC <sub>TOP-RICE 2</sub> [μg/L] | PEC <sub>PFAM 1.103</sub> [μg/L] |
|--------------|----------|----------------------------------|----------------------------------|
| A            | Lianping | 39.86                            | 56.25                            |
| A            | Nanchang | 38.54                            | 58.80                            |
| В            | Lianping | 39.86                            | 56.16                            |
| В            | Nanchang | 38.54                            | 58.70                            |
| $\mathbf{C}$ | Lianping | 39.59                            | 55.21                            |
| C            | Nanchang | 38.43                            | 57.69                            |
| D            | Lianping | 216.07                           | 168.61                           |
| D            | Nanchang | 136.66                           | 103.94                           |
| E            | Lianping | 215.87                           | 166.13                           |
| E            | Nanchang | 136.46                           | 103.36                           |
| F            | Lianping | 215.76                           | 113.95                           |
| F            | Nanchang | 136.40                           | 101.06                           |
| G            | Lianping | 274.18                           | 338.99                           |
| G            | Nanchang | 203.30                           | 260.74                           |
| Н            | Lianping | 274.14                           | 321.65                           |
| Н            | Nanchang | 203.10                           | 240.23                           |
| I            | Lianping | 274.08                           | 207.33                           |
| I            | Nanchang | 202.97                           | 131.06                           |

#### Application of exposure model



- From 2012, China-PEARL and TOP-RICE was used in pesticide registration.
  - China-PEARL: 33 chemicals
  - TOP-RICE: 34 chemicals, 17 shows an unacceptable risk

#### Example of application



- Insecticide: flubendiamide
- Pest: Striped stem borer, Rice leaf roller
- Dose: 20 -43.2 g a.i. /ha
- Application frequency: 2-3 times, interval:10-30 days
- Application date: Tillering Stem elongation





#### Example of application





March 1<sup>st</sup> 2016, US EPA issue a notice of intent to cancel all flubendiamide products, because of the risk to aquatic invertebrates.



# 谢谢!

THANKS FOR ATTENTION